
Extracting Meaning from Cascade Networks 

T.D. Gedeon and N.K. Treadgold 
Department of Information Engineering 

School of Computer Science & Engineering 
The University of New South Wales 

Sydney NSW 2052 AUSTRALIA 
E-mail: tom @ cse.unsw.edu.au 

Fax: +61 2 9385 5995 

ABSTRACT 

Cascade networks have advantages over the more familiar 
layered feedforward neural network architectures in terms 
of their ability to solve certain problems, and in their 
automation of the task of specifying the size and 
topology of network to use. 

Cascade networks still share the problem of lack of 
explanatory mechanism, and remain ‘black boxes’ 
sometimes mistrusted by end users. The more complex 
topologies of cascade networks complicates explanation 
or rule extraction, hence little previous work has been 
done. We extend our technique based on clusters of 
characteristic input patterns using the advantages of an 
improved cascade network. 

1. INTRODUCTION 

Neural networks which are grown to the appropriate size 
to match the requirements of particular problems and data 
sets have the advantage that the best number of 
processing elements in a layer do not need to be known 
in advance or discovered by trial and error but is generated 
during the problem solution. 

Dynamic node creation [ l ]  uses standard back- 
propagation on small networks and adds new units to the 
hidden layer when the drop in the error compared to the 
error when the last node was added falls below some user 
defined trigger value. New units are fully connected to 
previous and subsequent layers, with small random 
weights. The results were generally within 3 units of 
known minimal solutions. 

Statically sized nets at the minimal size at startup often 
take inordinate amounts of time to train as is well 
known. Starting with a lower dimensionality network 
and then increasing its size gradually, a network can 
spend less time training at maximum size than the 
equivalently sized back-propagation model. Certainly in 
the reverse situation where the dimensionality is 
constricted, there is some significant smoothing and 
generalisation of the error surface into the lower 
dimension [2]. 

The problem of deciding network size is likely to remain 
difficult in that if the number of hidden units required for 
a minimal solution could readily be calculated, then this 
would imply that we could decide whiat internal 
representations will be required [3]. We would then be 
able to solve the problem by some method directly using 
these internal representations, and would not need the 
training-by-example capabilities of neural networks. That 
is, the use of neural networks in general is likely to 
remain most important in areas in which the then current 
state of knowledge there remain problems which cannot 
be solved directly. 

Networks with a cascade structure based on the original 
cascade correlation network [4] have the added advantage 
that the number of layers of processing elements is also 
adaptive to the problem being solved. 

A disadvantage of cascade correlation is that ill chosen 
representations are also frozen early and have to be 
corrected by later layers. This problem is solved by the 
CasPer algorithm [5 ]  which produces smaller networks 
which generalise better and do not perpetuate early 
network artefacts. 

In previous work [a] we extracted explanations in the 
context of characteristic clusters of input patterns based 
on (standard feedforward) network output classification. 
Acceptable results were produced even with rude 
clustering based on averaging pattern values. CasPer 
cascade networks provide us with the opportunity to 
produce clusters of input patterns which are hierarchically 
sorted based on the cascaded structure. Explanations are 
produced in the context of these patterns. 

2. CASCADE ARCHITECTlJRE 

The cascade correlation [4] architecture starts from a 
simple structure which consists only of the inputs linked 
directly to the output units. 

The output units are trained as far as possible, which is 

0-7803-4053-1/97/$10.00 @ 1997 IEEE 301 9 



detected by lack of significant error reduction over some 
number of epochs. 

I I I outputs 

Figure 1. Initial cascade net. 

Another pass is made over the tsaining set to measure the 
error, and terminate the training if the residual error is 
sufficiently low. Alternatively, a new unit is added to the 
network, selected from a pool of candidate units. 

I I I outputs 

Figure 2. Cascade net - 1 hidden unit. 

The pool of candidate units are trained for a number of 
epochs with inputs of the networks external inputs as 
well as the results from any existing non-output units. 
The new unit selected is the one whose output is best 
correlated with the residual error. New units are connected 
as they are trained to all external inputs and to the 
outputs of all other non-output units. All training is 
done using the QuicWrop algorithm [7]. 

The advantages of the cascade correlation (CasCor) 
algorithm are that the majority of the network is frozen, 
and there is on one layer of weights being trained at any 
one time. This has the advantage of reducing the herd 
effect in that only candidate units are free to respond to 
error information. Candidate units in  the pool can also 
attempt to learn the error signal without the 
competitionlinteraction with other units, as there are no 
lateral connections within the pool, nor secondary 
‘connections’ via effects on the error term as the pool is 

observational only, units within it cannot reduce the 
error measure. 

While CasCor has been shown to be very successful [4], 
two drawbacks have been observed. These are over-large 
networks, and generalisation problems. The first of these 
is due to the weight freezing [8], as this can result in 
early hidden units which are poor feature detectors. The 
network then requires further hidden units to fix the 
errors introduced by these earlier units. The second 
drawback of poor generalisation on regression and some 
classification problems [9] is explained by pointing out 
that the use of the correlation measure in  CasCor forces 
the hidden units to saturate, which produces jagged edges 
i n  the network outputs. In addition, the correlation 
mechanism also forces the network to closely match the 
training set, which may cause overfitting in data sets 
which have noise present. 

We believe that weight freezing may also be a factor in  
the poor generalisation abilities of CasCor trained 
networks, since any early hidden units which act as poor 
feature detectors are frozen. In this case, again the 
network requires further units to fix the errors introduced 
by the earlier units, making it difficult to produce a 
smooth output function. 

3. CASPER ALGORITHM 

In this paper we will make use of a new cascade network 
algorithm employing Progressive RPROP (CasPer) 
which we proposed previously [lo], hence it is briefly 
described here. 

CasPer uses a modified version of the RPROP algorithm 
[ll-121 for network training. 

RPROP is a gradient descent algorithm which uses 
separate adaptive learning rates for each weight. Each 
weight begins with an initial learning rate, which is then 
adapted depending on the sign of the error gradient seen 
by the weight as it traverses the error surface. The update 
value for each weight is modified so that if the gradient 
direction has remained the same, then the update value is 
increased, while if the gradient has changed it is 
decreased. The actual value of the gradient is not used, 
only the direction or sign of the gradient. 

The RPROP algorithm has a number of advantages. It is 
fast to converge compared to the Back Propagation (BP) 
algorithm [13] and a number of other BP variants, and its 
performance is relatively invariant to initial parameter 
selection [12]. It is also only slightly more 
computationally complex than BP. 

The CasPer algorithm constructs cascade networks in  a 
similar manner to CasCor: CasPer starts with a single 

3020 



hidden uni t  and successively inserts single hidden units. 
RPROP is used to train the whole network each time a 
hidden unit is added. The use of RPROP is modified, 
however, such that when a new u n i t  is inserted, the 
initial learning rates for the weights in  the network are 
reset to values which depend on the position of the 
weight i n  the network (hence the name Progressive 
RPROP). The network is divided into three separate 
groups, each with its own initial learning rate L1, L2 
and L3. The first group is made up of all weights 
connecting to the new uni t  from previous hidden and 
input units. The second group consists of all weights 
connecting the output of the new uni t  to the output 
units. The third group is made up of the remaining 
weights, which consist of all weights connected to, and 
coming from, the old hidden and input units. 

I Inputs 

I I I outputs 

Figure 3. CasPer weights: L1 )) L2 > L3 

The values of L1, L2 and L3 are set such that L1 >> L2 
> L3. The reason for these settings is similar to the 
reason that CasCor uses the correlation measure: the 
high value of LI as compared to L2 and L3 allows the 
new hidden unit to learn the remaining network error. 
Similarly, having L2 larger than L3 allows the new unit 
to reduce the network error, without too much 
interference from other weights. Importantly, however, 
no weights are frozen, and hence if benefit can be gained 
by the network by modifying an old weight, this occurs, 
albeit at an initially slower rate than the weights 
connected to the new unit. Thus CasPer retains the 
effective benefits of the weight freezing and correlation 
techniques of CasCor, while removing both the 
saturation problem caused by the correlation measure, 
and the permanency of any poorly performing units 
caused by weight freezing. The removal of these two 
problems results in better network generalisation. 

CasPer also makes use of weight decay as a means to 
improve the generalisation properties of the constructed 
network. After some experimentation we found that the 
addition of a Simulated Annealing (SA) term applied to 

the weight decay, as used i n  the SARPROP algorithm 
[IO]  often improved convergence and generalisation. Each 
time a new hidden unit  is inserted, the weight decay 
begins with a large magnitude, which is then reduced by 
the SA term. The amount of weight decay is 
proportional to the square of the weight magnitude, 
which results in larger weights decaying more rapidly. 

In CasPer a new unit is inserted once the RMS error falls 
by less than 1 %  of its previous value. The time period 
over which this measure is taken is affected Iby the size 
of the network - CasPer increases the period over which 
the network is trained as the network grows in  size. 

4. EXPLANATIONS - CHAR. ]?AT. 

Many explanation and rule extraction techniques have 
been attempted for neural networks, with varied success. 
Many of these techniques are based on static properties of 
networks. We have shown that this approiach is less 
useful than behavioural measures when examining the 
functionality of individual hidden units in a network 
[14]. We have also recently shown that functional 
measures are better than static measures in the related 
domain of data mining of inputs [15]. We can speculate 
that there may be many weight matrix configurations 
giving rise to similar unit / network behaviour over the 
range of input patterns likely to be encountered. 

Our technique [6] is based on the use of causal index 
connections between inputs and outputs. This notion 
was introduced [16-171 using an assumption of a 
constant value for part of the derived formula of the rate 
of change of an output unit yk with respect to an input 
unit  xi using the chain rule of differentiation. This 
assumption left terms based only on the static weight 
matrix. While this approach seemed to work for some 
data sets, we found that the assumption did not hold for 
any data sets we examined. This is in accord with our 
subsequent investigations of static versus dynamic 
properties of neural networks. 

n 0.2 0.4 0.6 I I lnpul Value 

Figure 4. The productf(Ukz).f(U,/il) is not constant. 

3021 



We use special input patterns called characteristic 
patterns to reduce the search space from needing to 
examine network behaviour on all input patterns. 

AS we are interested in  explaining how a network comes 
to a conclusion, we select characteristic patterns based on 
the network behaviour, rather than the classifications in  
the labelled set of patterns. Thus, the charucterisricon 
(Con) set of patterns is those for which a particular 
output unit  (category) is turned on. For very simple 
networks, we can similarly form a characteristic off 
(Con set of patterns which turn the output of that unit 
off. For most more complex networks, we simply use 
the Con sets of other outputs as a number of Coff sets. 

We produce concise explanations as follows: 

1. Liken the input pattern to the characteristic input 
patterns, and present the most similar to the user. 

2. In addition, present inputs considered ‘important’ for 
the current network output, and their values in the 
characteristic pattern. 

3.  Produce a set of rules to confirm accuracy. 

4. Give the network’s next most likely output. 

The first step of the explanation can be compared to 
some forms of explanations used by human experts to 
explain their conclusions. As an example consider a 
doctor explaining why he has come to a particular 
diagnosis. A typical explanation may include statements 
such as “You have all the classic symptoms of X.” 
Presenting the characteristic input pattern is similar to 
this kind of behaviour. 

As there may be more than one characteristic input 
pattern produced from a network’s training set (one for 
each distinctive output) the input pattern is compared to 
all these patterns and the most similar characteristic 
pattern is presented. 

Once the correct characteristic input pattern has been 
found it is a simple operation to present the inputs 
important in  the current input pattern. The inputs 
appearing in the graph of this pattern are presented to the 
user, with their characteristic values. This is done even 
in cases in  which the pattern is being used as a 
characteristic 0 F F  pattern for another output. This 
procedure can be likened to the manner a doctor explains 
a diagnosis he has made. The patient has most of the 
standard symptoms of a certain disease X, however, one 
or more different symptoms leads the doctor to the 
conclusion that the diagnosis is disease Y. 

In some cases (such as that described above), patterns are 
similar to that of one characteristic pattern, but result in 
a different output. In these cases, rules are presented to 

provide an invaluable insight into how the network is 
making its decisions. In other cases the rules produced 
can offer some help in understanding the network’s 
actions. 

To select the next most likely output, the simple 
comparison used in  the choice of characteristic inputs is 
again used. In this case however, the next most likely 
output is that whose characteristic ON input pattern is 
most similar to the current input pattern, other than the 
characteristic input pattern for the network’s current 
output. This method produces the output (other than the 
current output) that will occur by making the smallest 
possible change to the input pattern. 

5. EXPLANATIONS - CASCADE NET 

The cascade networks produced by CasPer do not freeze 
weights, thus even the earlier weights in these networks 
contribute to the final network in a coherent manner. We 
can disentangle the behavioural effects of the weights 
from each part of the network in their contribution to the 
output to determine a hierarchical classification scheme 
starting with the weights corresponding to the initial 
zero hidden units case, followed by one hidden unit and 
so on up to the maximum number of cases. 

In this paper, however, we have opted for the simpler 
solution which is to checkpoint the weight matrix values 
at each stage and perform our analysis using these 
networks. Note that both methods are applicable to 
cascade networks produced by other training algorithms, 
however, this simpler solution reduces the smoothing 
benefit we get from our use of CasPer and hence this the 
conservative choice in terms of comparison to other 
techniques. 

Explanations are produced in the context of these clusters 
of similar patterns. 

The data set we have used is Fisher’s classic Iris data set 
i n  which irises are classified into three classes. It 
consists of 150 patterns, of which 120 were randomly 
selected as training patterns, leaving 30 as test patterns. 
Each Iris pattern consists of 4 input and 3 output values. 

6. RESULTS 

The Iris results (Figure 12 and Table 2) support the 
notion that CasCor does not perform well on 
classification tasks in  the presence of noise, while 
CasPer is shown to maintain a good level of 
generalisation with such data sets. An interesting point 
to note in  Figure 12 is that CasCor produced no 
networks larger than 5 hidden units, while CasPer 
continued to add up to 6 hidden units. This is reflected in 
Table 1. 

3022 



Table 1. CasPer versus CasCor on Iris data set. 

Out-1 

O u t 3  

Median 316 I 4.00 I 2.62 x 106 I 90.0 

Std. dev. 1 72 1 1.02 I 1.07 x 106 I 3.8 
I 

111-3 < 3.36 

In-2 < 3.03 & 111-3 > 2.49 

CasCor 

Out-3 1 111-3 > 1.42 & In-4 > 1.75 

-Units = 1 (elided rules for Out-1,Out-3) -1 CasPer inserts on average of 4.01 hidden units, as 
compared to CasCor’s 2.6. The result of CasCor’s quick 
learning of the training set is that i t  overfits the training 
data, resulting in poor and decreasing performance on the 
test set. It should be noted that with this type of noisy 
classification problem it is results on the test set which 
will define when training should be halted, and not at 
what point the training set is actpally learnt. According 
to this criterion CasPer produces networks which, if 
training were halted after the insertion of any hidden unit, 
both perform well on the test set, and in  general would 
outperform the corresponding CasCor networks as 
demonstrated in Figure 5. 

1 2 3 4 S 

Hidden Units 

Figure 5 .  CasPer learns Iris, CasCor overfits. 

We have chosen a single CasPer net which terminated 
training on 3 hidden units (as most comparable to 
CasCor) for extracting explanations. The explanation 
rules only are shown in Table 2. 

Note that there are three sets of rules in  Table 2 (above, 
right). For the sake of brevity, the complex rules in the 
Units = I case have been elided except for the rules for 
the second output unit. 

The table shows that the network initially forms some 
rough characterisation of the inputs, but there are 

exceptions. That is. we must remember thait these rules 
are expressed in  terms of deviations from similarity of 
the characteristic patterns for each output unit. To be in 
the class represented by Out-J, a pattern mlust be most 
similar to that characteristic pattern, and obe:y the rule. 

Table 2. Explanation rules CasPer 1 to 2 units. 

We can see that in the single example shown in Table 2 
for the Units = I case, the rule is more complicated. In 
fact, all of the rules are more complicated than for the 
initial case. Of course, the network perfolrmance has 
most likely increased at the same time as shown in the 
aggregate results depicted in Figure 5 .  The single 
example shown also shows the only occurrence of a 
central subrange, for 111-3, in this rule set. 

N 

6 

I I I I- 

I .5 2 .5  3.5 4.5 5 . 5  

By the time the network converges to its best solution, 
in this case with only 3 hidden units, the rules are much 

3023 



simpler. That is, the rules for both classes represented by 
Out-1, and Out-3 are simply for patterns being most 
similar to the respective characteristic patterns. All of the 
exception cases are concentrated on one outputs class. 
The patterns which are most similar to Out-2 must obey 
the rules listed, or are not of that represented class and 
hence are of the class of the next most similar 
characteristic pattern. 

7. CONCLUSION 

We have described the extension of our technique of 
providing explanations for neural network conclusions to 
networks with cascade architectures. Cascade networks, 
particularly those produced using our CasPer algorithm, 
provide us with the opportunity to produce clusters of 
input patterns which are hierarchically sorted based on 
the disentangling or checkpointing the cascaded structure. 
Rules are produced in  the context of these clusters of 
similar patterns. 

8. REFERENCES 

Ash, T, “Dynamic node creation in backpropagation 
networks,” ICs Report 8901, University of 
California, San Diego, 1989. 

Kruschke,JK, “Improving generalization in back- 
propagation networks with distributed bottlenecks,” 
Proceedings Internationat Joint Conference on Neural 
Networks, vol. 1, pp. 443-447, 1989. 

Harris, D and Gedeon, TD “Adaptive insertion of 
units in feed-forward neural networks,” Proceedings 
4th Intemutional Conference on Neural Networks and 
their Applications, 9 pages, Nimes, 199 1. 

Fahlman, SE, Lebiere, C, “The cascade-correlation 
learning architecture,” CMU-CS-90-100, Carnegie 
Mellon University, 1990. 

Treadgold, NK and Gedeon, TD “A Cascade Network 
Algorithm Employing Progressinve RPROP,” i n  
Mira, J, Moreno-Diaz, R and Cabestany, J, (eds.), 
Biological and Artificial Computation: From 
Neuroscience to Technology, pp. 733-742, Springer 
Verlag, Lecture Notes in Computer Science, vol. 
1240. 1997. 

Gedeon, TD and Turner, H “Explaining student 
grades predicted by a neural network,” Proceedings 
International Joint Conference on Neural Networks, 
pp. 609-612, Nagoya, 1993. 

[7] Fahlman, SE “An empirical study of learning speed 
in  back-propagation networks,” Technical Report 
CMU-CS-88-162, Carnegie Mellon University, 
Pittsburgh, PA, 1988. 

[8] Kwok, T and Yeung, D “Experimental Analysis of 
Input Weight Freezing i n  Constructive Neural 
Networks,” Proceedings IEEE Internetional 
Conference on Neural Networks, pp. 51 1-5 16, 
1993. 

[9] Hwang, J, You, S, Lay, S and Jou, I “The Cascade- 
Correlation Learning: A Projection Pursuit Learning 
Perspective,” IEEE Transactions on Neural 
Networks, vol. 7, no. 2, pp. 278-289, 1996. 

[IOITreadgold, NK and Gedeon, TD “A Simulated 
Annealing Enhancement to Resilient 
Backpropagation,” Proceedings International Panel 
Conference on Soft and Intelligent Computing, 
Budapest, pp. 293-298, 1996. 

[lI]Riedmiller, M and Braun, H “A Direct Adaptive 
Method for Faster Backpropagation Learning: The 
RPROP Algorithm,” Proceedings IEEE International 
Conference on Neural Networks, pp. 586-591, 1993. 

[12]Riedmiller, M “RPROP - Description and 
Implementation Details,” Technical Report, 
University of Karlsruhe, 1994. 

[13]Rumelhart, DE, Hinton GE and Williams RJ 
“Learning internal representations by error 
propagation,” in  Parallel Distributed Processing: 
Explorations in the Microstructure of Cognition, 
vol. 1, MIT Press, pp. 3 18-362, 1986. 

[14]Gedeon, TD “Indicators of Hidden Neuron 
Functionality: the Weight Matrix versus Neuron 
Behaviour,” Australasian Journal of Intelligent 
Information Processing Systems, vol. 3, no. 2, pp. 
1-9, 1996. 

[ISIGedeon, TD “Data Mining of Inputs: Analysing 
Magnitude and Functional Measures,” International 
Journal of Neural Systems, 1 1 pages, 1997. 

[16]Hora, N, Enbutsu, I and Baba,K “FUZZY rule 
extraction from a multilayer neural net,” Proceedings 
IEEE, vol. 2, pp. 461-465, 1991. 

[17]Yoda, M, Baba, K and Enbutsu, I “Explicit 
representation of knowledge aquired from plant 
historical data using neural networks,” International 
Joint Conference on Neural Networks, San Diego, 
vol. 3, pp. 155-160, 1991. 

3024 


